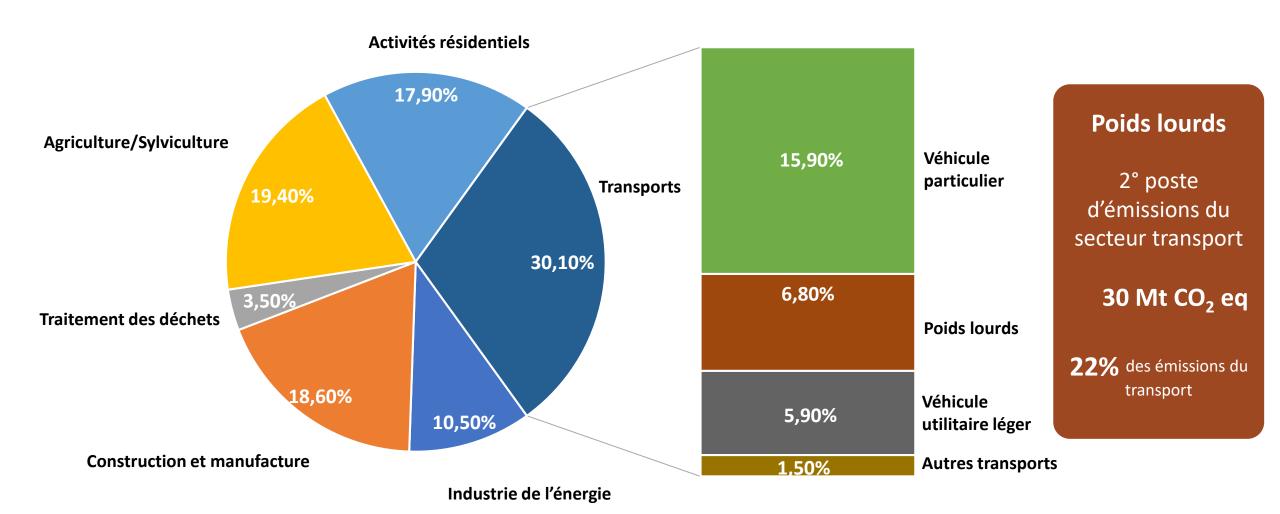


T. Inocente, Q. Labrue

Sommaire


1 - Contexte

- 2 Environnement
- 3 Problématisation
- 4 Modélisation
- 5 Conclusion et prochaines étapes

Emissions de CO₂ en France (2021)

Source: insee, CITEPA, rapport Secten 2020

FRET : Stratégies de décarbonation pour les longues distances

Report modal	Développement du fret ferroviaire et fluvial	Des réseaux étendus Capacité supérieur à un PL	Rupture de charge (ex : du dernier kilomètre) Réseaux à moderniser
Electrification des PL	Utilisation de camions à batteries électriques	Exemple du véhicule particulier électrique	Autonomie des batteries Cycle de vie des batteries
PL à Hydrogène	Utilisation de camions à hydrogène produit à partir d'électricité bas carbone	Technologie plus adaptée aux longs trajets	Développement de la technologie incertain
ERS	Electric Road Systems : équipement du Ro réseau autoroutier pour distribuer de l'électricité aux camions en roulant	éseau autoroutier existant Réduction autonomie batterie	Coûts d'investissements élevés + risque technologique

Etude du déploiement de l'ERS

Les principales technologies

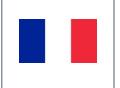
TECHNOLOGIE

ACTEUR

PAYS

PHOTO

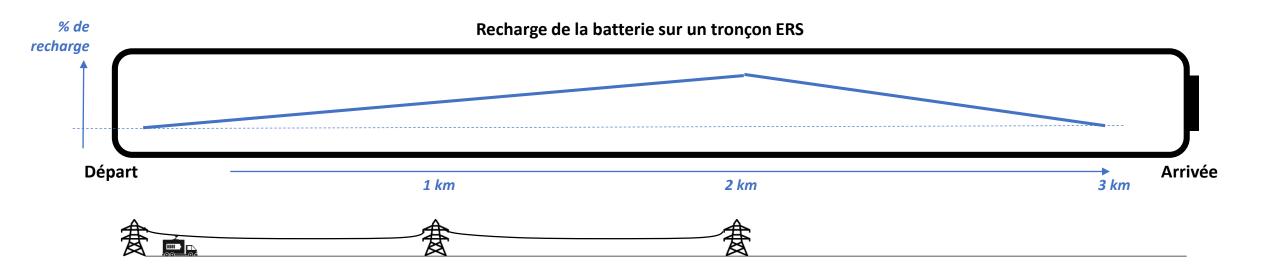
Conduction aérienne


SIEMENS

Conduction au sol

Conduction latérale

Induction

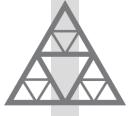

Notre hypothèse sur le technologie

Hypothèse

La puissance délivrée sur un tronçon d'ERS sert à 2/3 pour alimenter le roulage du poids lourd, le 1/3 restant sert à la recharge.

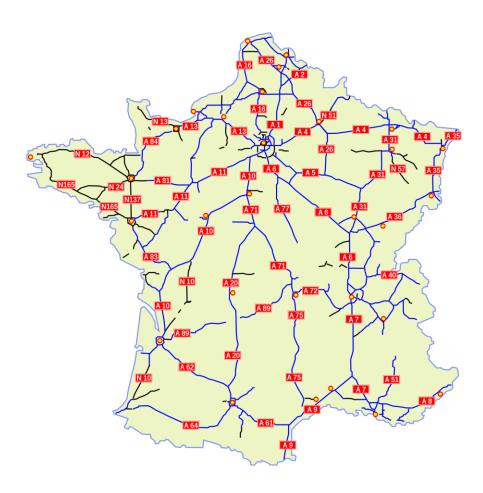
Cette hypothèse permet de se libérer des réflexions sur la technologie qui sera déployée

Sommaire


1 – Contexte

2 - Environnement

3 - Problématisation


4 - Modélisation

5 – Conclusion et prochaines étapes

Notre point de vue

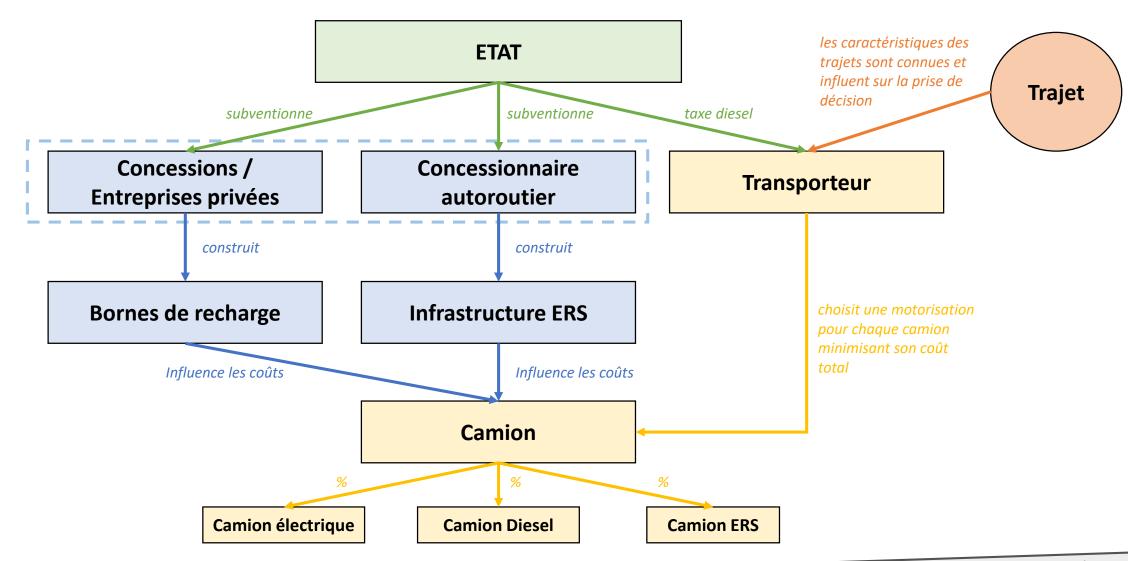
Réseau autoroutier français

Hypothèses

On considère le réseau de point de vue macro

Un camion → une origine + une destination

Le concessionnaire est constructeur et connaît donc parfaitement tous les coûts


Pourquoi?

- Littérature déjà existante sur le déploiement sur un tronçon spécifique (car on connaît les paramètres de manière beaucoup plus micro)
- Le transporteur raisonne sur les coûts d'un trajet (1 camion fait toujours le même trajet) donc cela ne changerait rien d'avoir une multitude d'acteurs

Les différents acteurs

3 options pour le transporteur

Camion Diesel

Pas de batterie

Camion de 40 tonnes

Le transporteur paye :

- Le camion
- Le diesel + la taxe diesel
- Le péage traditionnel

Recharge:

Camion ERS

Petite batterie

Camion de 40 tonnes

Le transporteur paye :

- Le camion élec + l'équipement ERS
- L'électricité batterie + ERS
- Le péage ERS

Recharge:

Bornes faible puissance

Bornes forte puissance

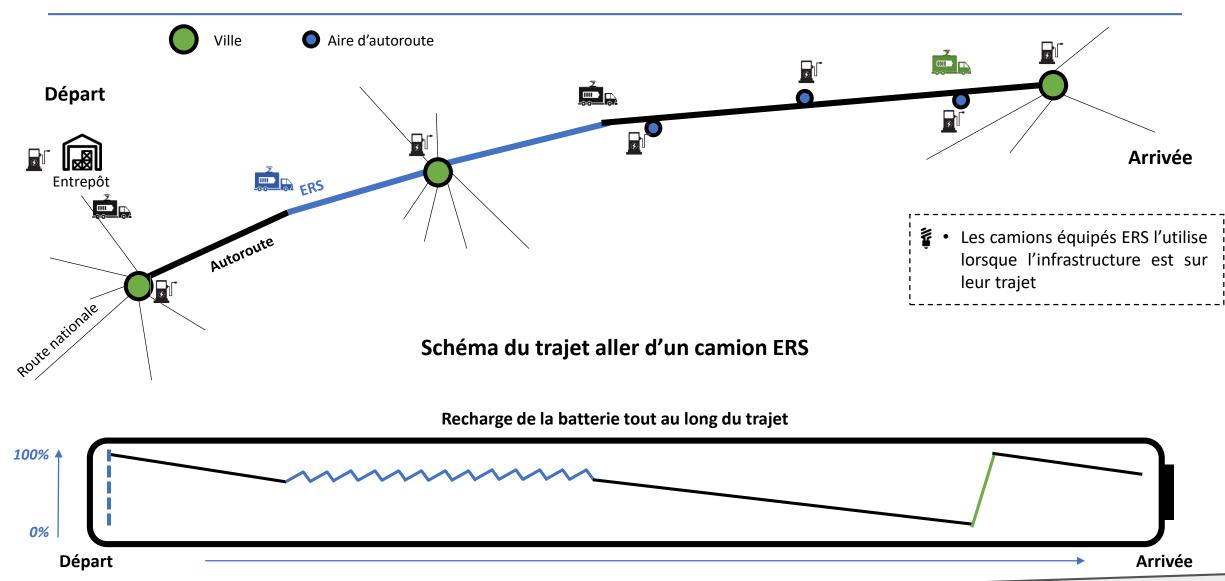
Camion Tout Electrique

Grande batterie

Camion de 40 tonnes

Le transporteur paye :

- Le camion électrique
- L'électricité batterie
- Le péage traditionnel


Recharge:

Bornes forte puissance

Modélisation d'un trajet d'un PL ERS

Sommaire

- 1 Contexte
- 2 Environnement
- 3 Problématisation
 - 4 Modélisation
 - 5 Conclusion et prochaines étapes

Qu'étudions-nous?

Problématique

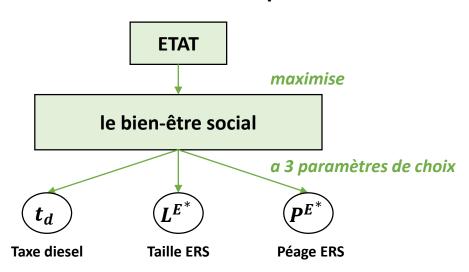
Quel modèle économique pour le déploiement de l'ERS dans une compétition face aux solutions « Diesel » et « Tout Electrique » ?

O

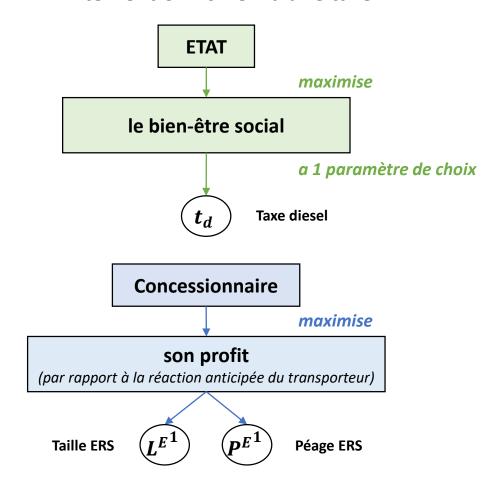
Objectifs

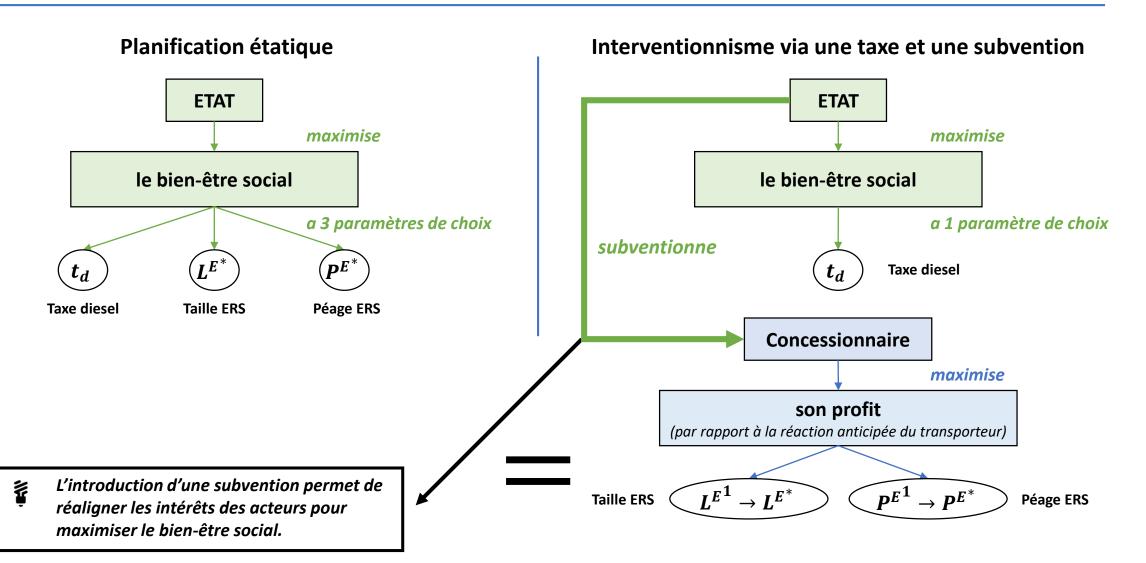
- Modéliser le déploiement du réseau ERS
- Considérer le potentiel de décarbonation de la solution ERS
- Analyser le comportement des acteurs face aux leviers d'action publique

Résultats attendus


- Calcul de la taille du réseau ERS
- Calcul du prix du péage ERS
- Analyse des recettes et des dépenses fiscales
- Calcul du coût d'abattement en CO₂ réalisé
- Analyse des conséquences d'une subvention

Mécanismes étudiés

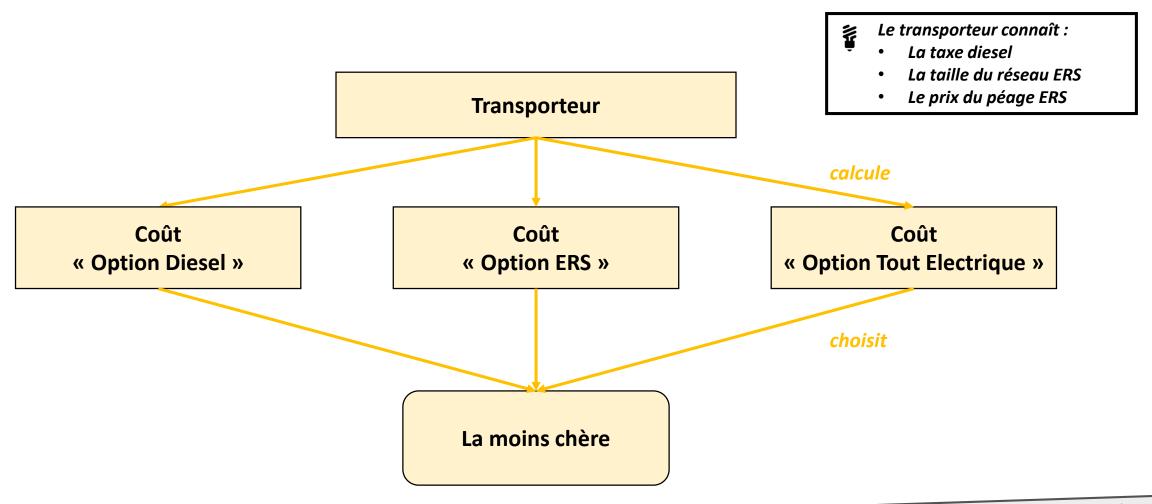

Planification étatique


L'Etat ne parvient pas juste avec une taxe diesel à maximiser le bien-être social.

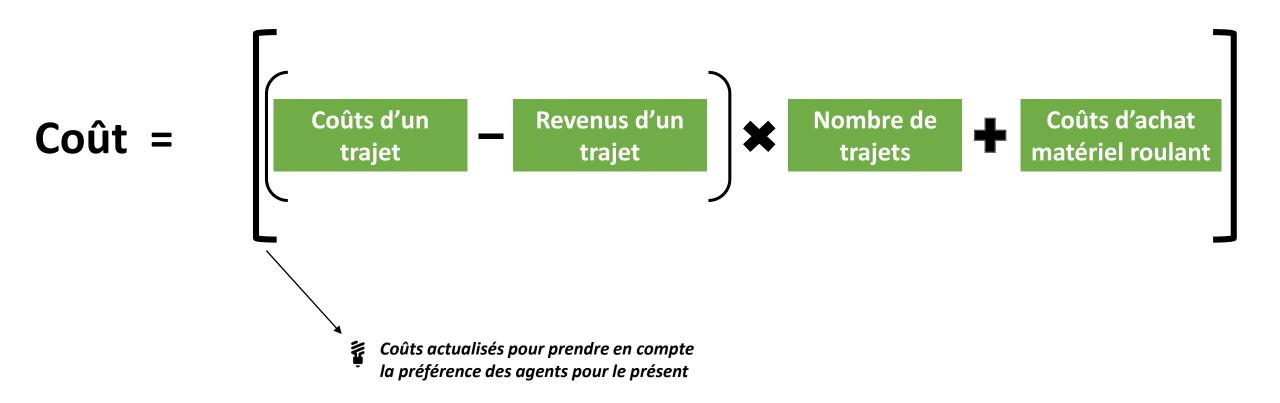
Interventionnisme via une taxe

Mécanismes étudiés

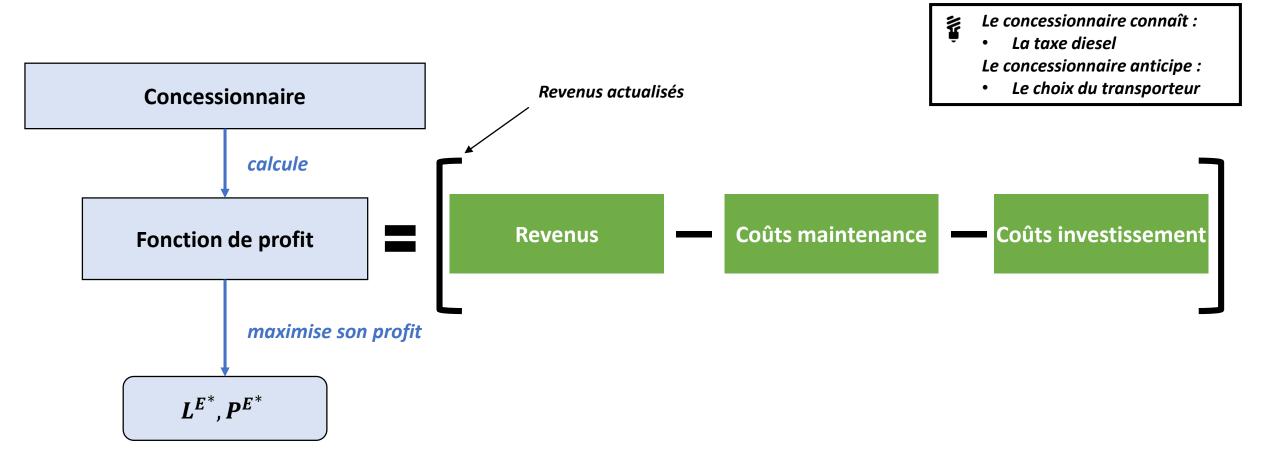
Sommaire


- 1 Contexte
- 2 Environnement
- 3 Problématisation
- 4 Modélisation
 - 5 Conclusion et prochaines étapes

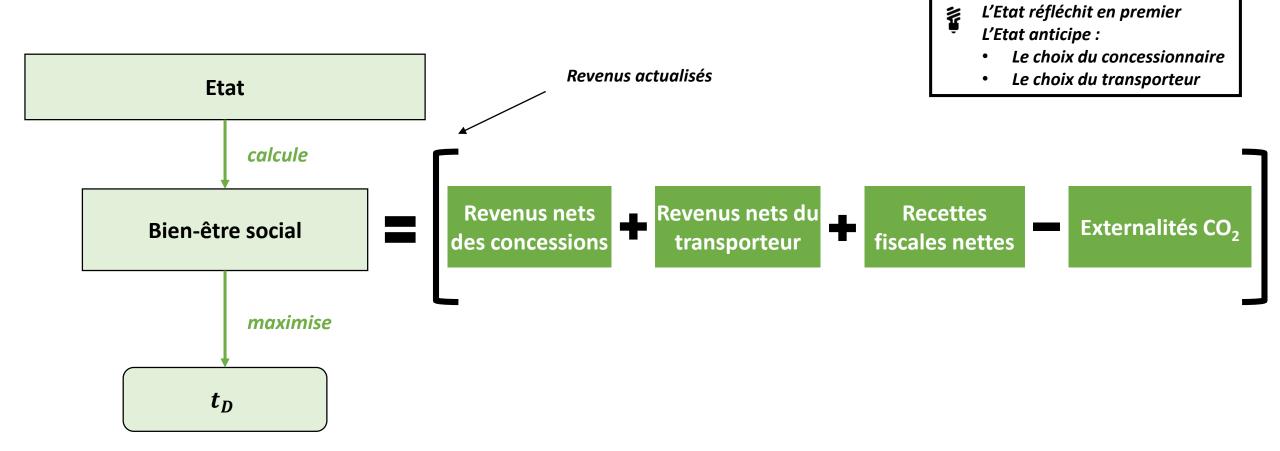
Choix de la motorisation


Comment le transporteur choisit-il la motorisation d'un camion sur un trajet donné?

Détail du coût

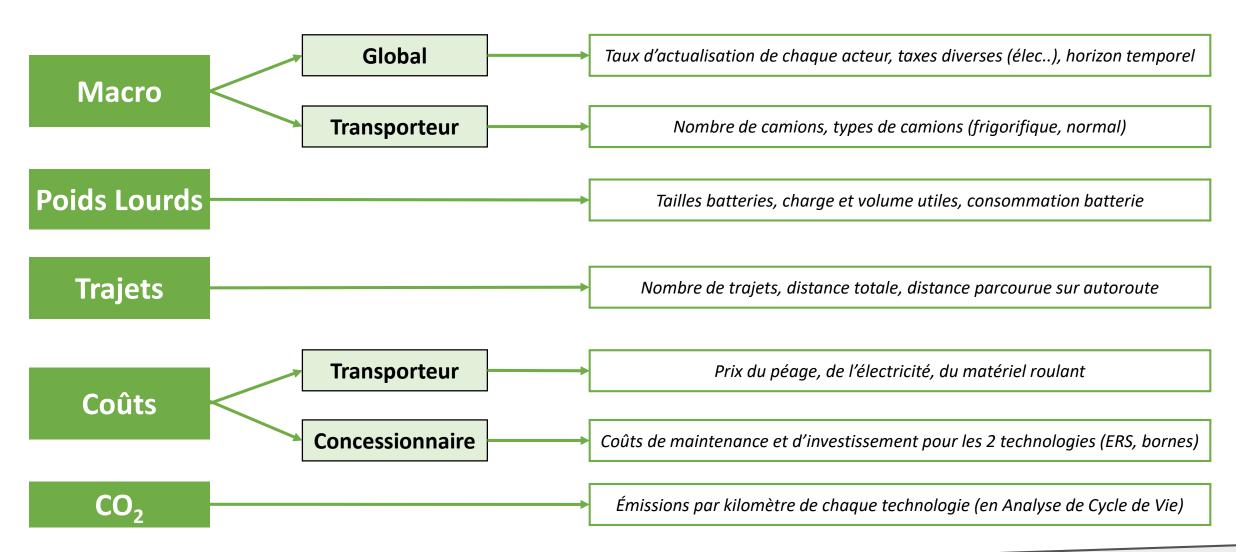

Le transporteur veut maximiser ses revenus pour chaque camion

Choix de la taille et du péage


Comment le concessionnaire choisit-il la taille du réseau ERS et le péage d'accès ?

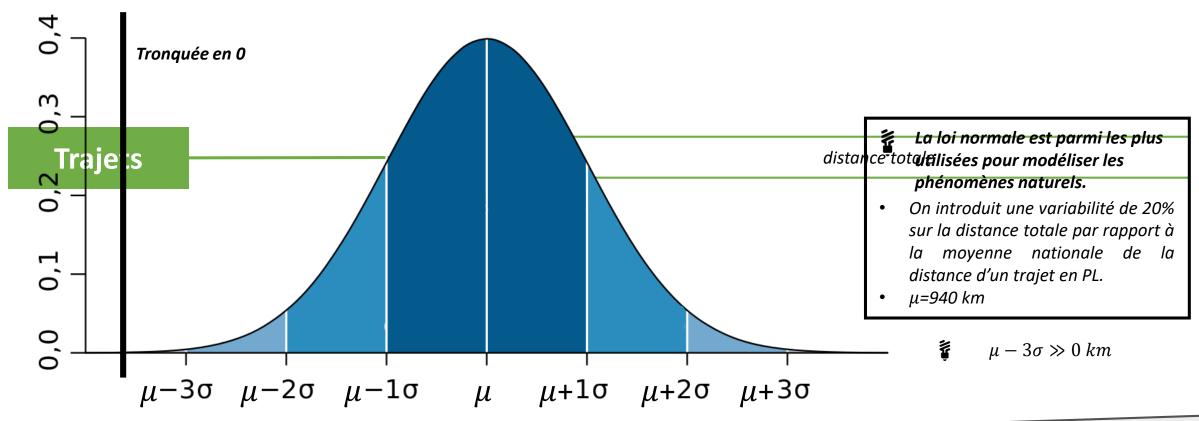
Comment l'Etat fixe-t-il la taxe ?

Comment l'Etat choisit-il la taxe diesel?


Sommaire

- 1 Contexte
- 2 Environnement
- 3 Problématisation
- 4 Modélisation
- 5 Conclusion

Données utiles



Q Zoom sur un type de données

Loi normale tronquée pour déterminer la distance totale parcourue

Limites identifiées

LIMITE

PROBLÈME SOULEVÉ

PISTES

Compétition entre la solution ERS et tout électrique

- Relation de cannibalisation
- •Le pouvoir étatique donne une enveloppe de subvention, mais ne sait pas quel euro est utilisé vers le « tout électrique ou vers l'ERS
- Relation de cannibalisation linéaire

Pénaliser le temps d'attente

- Congestion sur les bornes et sans doute de manière endogène
- Dilemme entre temps de détour et temps d'attente

 Mettre de l'aléatoire sur un temps d'attente exogène

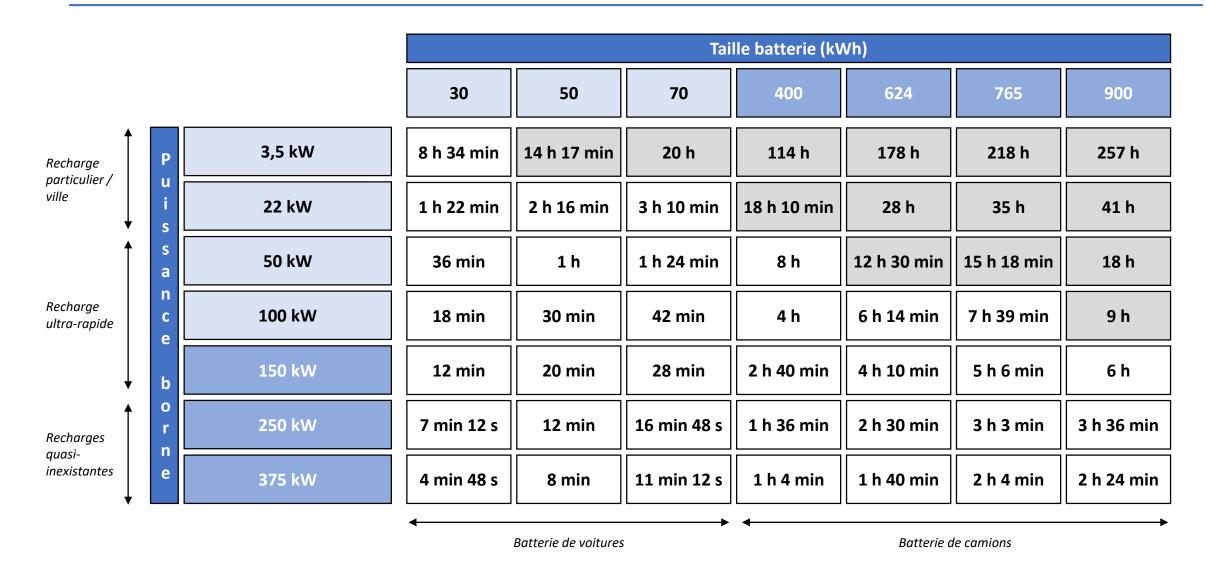
Stratégie de recharge et de déploiement des bornes

- •Où mettre les bornes à échelle locale / micro
- On ne considère pas la stratégie de recharge du constructeur (car il faudrait considérer un trajet de manière trop fine → perte du point de vue macro)

Pas de volonté de l'aborder

Merci pour votre attention!

Nous sommes preneur de vos retours + de vos conseils si vous identifiez des solutions pour adresser les limites abordées


Présentation

Annexes

Recharge des VE

Etude du déploiement de l'ERS

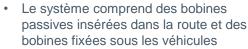
Les principales technologies

INDUCTION

ACTEUR

PAYS

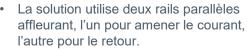
PHOTO



Induction

- Il faut 4 à 8 bobines sous le camions pour atteindre au moins 150 kW
- Peu intrusive une fois installée
- Tous véhicules

Faible maturité


- Puissance trop faible pour PL
- Mauvais rendement

Conduction au sol

- La captation se fait sous le véhicule par un bras articulés (battement latéral de 50 cm)
- Maturité intermédiaire
- Compatible tous véhicules
- Moindre OPEX

 Complexité de réfection des couches

 Nécessité de toucher à la chaussée

Conduction aérienne

- La solution est dérivée du ferroviaire
- Le véhicule est équipé d'un pantographe qui reçoit le courant via la caténaire
- Solution la plus mature
- Solution non intrusive pour la chaussée
- Contraintes sur l'exploitation
- Impossibilité d'alimenter les véhicules de petites tailles

Conduction latérale

- Le courant est amené sur le côté par une rail inséré dans la glissière de sécurité.
- La système est conçu pour une recharge très rapide sur de courts tronçons
- Maturité intermédiaire
- Compatible tous véhicules
- Moindre OPEX
- Complexité de réfection des couches
- Nécessité de toucher à la chaussée

Source : groupe de travail du ministère de l'écologie

Etats des lieux bornes de recharge

Public charging infrastructure in Germany – A utilization and profitability Analysis, Benedict J. Mortimer, Nov. 2022

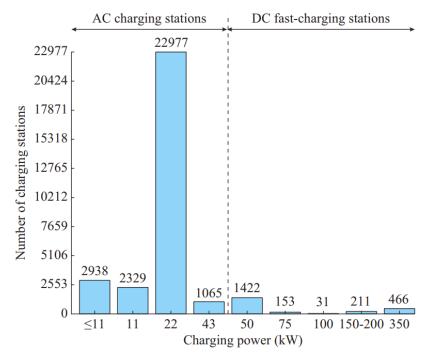


Fig. 1. Distribution of charging stations in Germany by charging power in August 2020.

KEY STATISTICAL DATA FOR AC CHARGING AND DC FAST-CHARGING

Charger type	Charging events	Percentage of events longer than six/three hours (%)	Average occupation time (hour)	Average charging time (hour)
AC	682145	21.0	4.2	3.10
DC	127223	2.5	1.0	0.95

Pour l'instant, les points de recharges compatibles avec les camions sont anecdotiques même pour un pays en avance sur l'électrique par rapport à la France, à savoir l'Allemagne. Dans notre première phase, lorsque les Diesel peuvent encore rouler il serait plus pertinent d'avoir un nombre de points de recharges pour camions limité (temps d'attente, ou alors distance supplémentaire pour aller au point de recharge \Rightarrow ie une autonomie « utile réduite »

Etats des lieux bornes de recharge

Facility Location Models for Electric Vehicle charging Infrastructure, Damia V. Bover, May. 2017

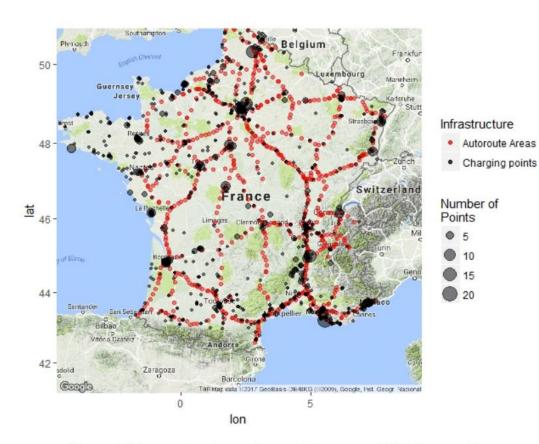
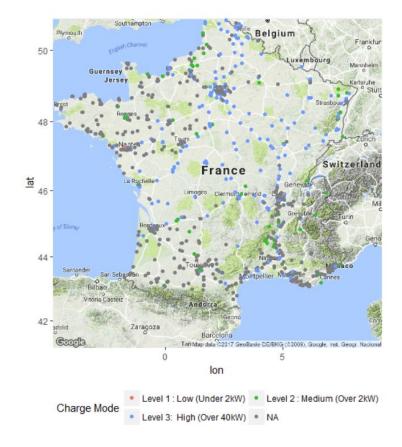


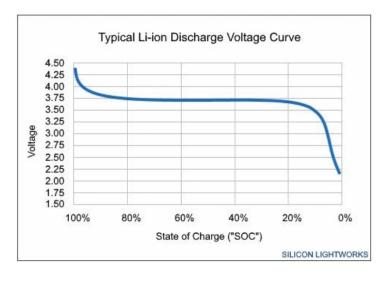
Figure 6: France charging points and Autoroute POIs. Source: Own

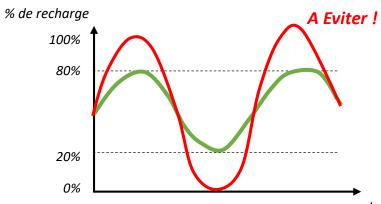
Deux tendances émergent. Tout d'abord les points de recharges se concentrent sur autoroute ou à très proche proximité des sorties (< 5km), et dans les agglomérations de grande et moyenne tailles. Deuxièmement, ce sont les

Deuxièmement, ce sont les autoroutes qui concentrent les stations avec les bornes rapides et ultra-rapides.

Bien que ces conclusions s'appliquent en majorité aux voitures électriques, elle pourraient dessiner une tendance pour les poids lourds électriques.




Figure 4: French charging infrastructure by charge type. Source: [25]



La durée de vie des batteries

Iglesias E. : Étude du vieillissement des batteries lithium-ion dans les applications "véhicule électrique" Université de Lyon, 2017.

Paramètres influençant la durée de vie d'une batterie

- Température de stockage
- Amplitude des cycles de recharge
- Eviter le stationnement prolongé
- Taille de la batterie, corrélation positive entre taille et durée de vie
- Style de conduite (éco ou pas)
- Puissance des recharges, corrélation négative entre puissance et durée de vie
- Ne pas utiliser et recharger directement et inversement

Trajet:

Soit un PL noté n :

- o de distance totale : l_n (suit une loi normale)
- \circ de vitesse moyenne : v_{moy}
- o de distance sur autoroute (ERS compris) : l_n^W (suit une loi normale tronquée)
- \circ sur la distance l_n^W effectuée sur autoroute seule une portion d_n dispose de la technologie ERS
- o d_n de loi binomiale $\mathcal{B}(l_n^W, \tau^E)$ où $\tau^E = L^E/L$ (taille réseau ERS/ taille réseau autoroute)
- \circ P_B est la puissance délivrée par les bornes de recharge (on suppose un seul type de bornes)
- \circ Prix élec ERS + Taxe de l'électricité pour ERS + Péage ERS par km : $c^E + t^E + P^E$
- o Prix élec batterie + Taxe sur l'électricité batterie + Péage normal par km : $c^B + t^B + P^W$
- o Prix diesel + Taxe diesel autoroute + Péage normal par km : $c^D + t^D + P^W$

Sur le transporteur :

- o Le camion effectue un rôle de navette, c'est-à-dire qu'il fait des allers-retours sur le même trajet
- Un transporteur possède N camions
- Le trajet est réalisé un nombre k fois sur l'année
- On a 3 options (1- Diesel, 2- Batterie sans ERS, 3- Hybride ERS-Batterie), le camionneur choisira l'option qui minimise ses coûts, connaissant tous ses trajets.
- Les ERS sont construites en tronçon de 3 km (2km de recharge, pour 1km sans recharge), c'est-à-dire que le camion ne gagne ni ne perd d'autonomie sur chacun des tronçons ERS.
- Si je choisis l'option 3, quand je circule sur un tronçon ERS alors je l'utilise.
- On suppose que le coût horaire des chauffeurs est le même indépendamment des 3 options

Sur les batteries :

- On suppose 3 tailles de batteries correspondant aux 3 scénarios : (A étant l'autonomie en km)
 - $\circ A = A_D = 0$ pour le scénario diesel
 - \circ $A = A_p = A_{petite}$ pour le scénario camion équipé ERS
 - $A = A_g = A_{grande}$ pour le scénario batterie
- \circ On note la consommation de la batterie ρ (en kWh/ 100 km)
- On suppose une durée de vie identique pour les 3 tailles de batteries. Si on veut pénaliser une des options en durée de vie on pourra simplement le prendre en compte dans le surcoût de la batterie (en amortissant moins longtemps)

Sur les bornes de recharge :

- On suppose qu'il existe un nombre fini de bornes de recharge et qu'il faut donc inclure un détour pour aller se brancher à la borne. Le temps du détour est une fonction de la densité de bornes de recharge.
- On suppose qu'on construit les bornes uniquement sur autoroute. Les villes étant des sorties d'autoroutes.
- On suppose que le concessionnaire autoroutier construit un nombre total de bornes de recharge $B_{camion}=B_c=\frac{L}{\sqrt{2}d_B}$, où d_B est la distance moyenne entre deux bornes. L'Etat peut subventionner chaque borne construite.
- Les bornes sont de deux types, les bornes petites et grandes :

$$\circ B(A_p) = \frac{L^E}{\sqrt{2} d_B}$$
, $B(A_p)$ bornes de petite puissance $P_{B,p}$

$$\circ B(A_g) = \frac{L - L^E}{\sqrt{2} d_B}$$
, $B(A_g)$ bornes de grande puissance $P_{B,g}$

o On a bien
$$B(A_p) + B(A_g) = B_C$$

Sur les temps d'attente aux bornes:

- o t_n le temps d'attente pour accéder à une borne (B(A) étant le nombre de bornes compatibles avec la batterie A):
 - Pas d'attente pour la recharge dans le cas Diesel
 - O Pour les camions de batterie A_p , toutes les bornes sont accessibles, ie B_C bornes, donc $t_n = \frac{d_B}{v_{mov}}$

ou de manière équivalente :
$$t_n = \frac{L}{\sqrt{2} \times B_C \times v_{moy}}$$

 \circ Pour les camions de batterie A_g , on considère la distance entre les bornes de grande puissance, on considère donc leur proportion sur l'autoroute, $t_n = \frac{L}{B(A_g) \times v_{moy}} = \frac{L}{\frac{L-L^E}{\sqrt{2} \ d_B} \times v_{moy}} = \frac{\sqrt{2} \times d_B \times L}{(L-L^E) \times v_{moy}}$

Sur les puissances des bornes :

 \circ La puissance P_B d'une borne à laquelle se recharge un camion ERS suit la loi de probabilité suivante :

$$\begin{array}{c}
P(P_B = P_{B,p}) = \frac{B(A_p)}{B_c} \\
P(P_B = P_{B,g}) = 1 - \frac{B(A_p)}{B_c} = \frac{B(A_g)}{B_c}
\end{array}$$

 \circ Pour un camion entièrement batterie la puissance vaut $P_B = P_{B,g}$ car il ne peut se recharger que sur les bornes les plus puissantes

Option 1 : Diesel

Fonction de coût : Coût d'achat Coût des trajets
$$C_n^D \left(P^E, L^E\right) = \sum_{t}^{T} (1+\alpha)^{-t} \left(\frac{P^{PL}}{T^{PL}} + k_n \left(R^D - U_n(A_D)\right)\right)$$
 Péage ERS Taille réseau ERS Durée de vie du camion Profit du trajet

Coût d'un trajet :

$$R^D = l_n(c^D + t^D) + P^W l_n^W$$

Fonction d'utilité

Masse utile:

$$M_u = M_0 - \frac{A \times \rho}{\sigma_m}$$

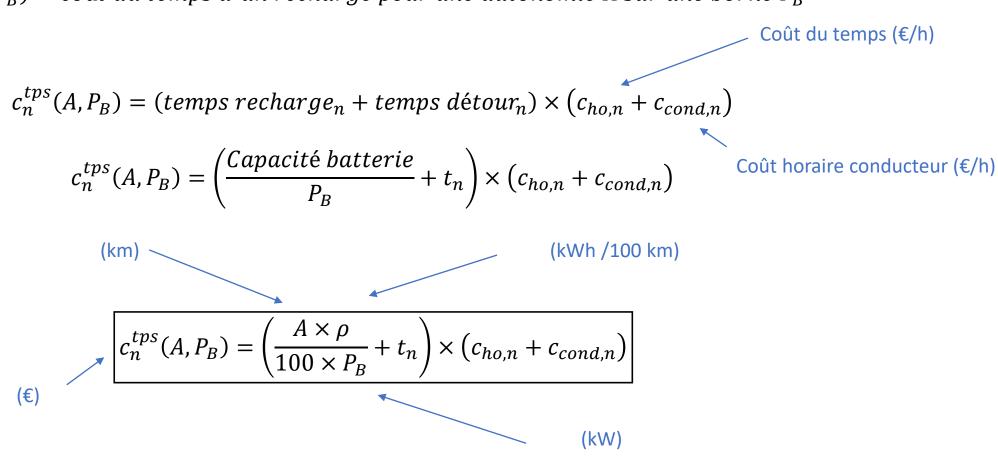
 $\sigma_m = 150 \ kWh. kg^{-1}$ est une constante physique

Volume utile:

$$V_u = V_0 - \frac{A \times \rho}{\sigma_V}$$

 $\sigma_V = XX Wh. m^{-3}$ est une constante physique

Fonction d'utilité:


Pour certains PL qui transportent certaines marchandises, le limitant c'est la masse utile ($\mathbb{1}_{n,m}=1$) pour d'autres c'est le volume ($\mathbb{1}_{n,m}=0$) (ici $\mathbb{1}_{n,m}$ est une données initiale du problème connue).

$$U_{n,m}(A) = \mathbb{1}_{n,m} l_n c_n^{massique} \left(M_0 - \frac{A \times \rho}{\sigma_m} \right) + (1 - \mathbb{1}_{n,m}) l_n c_n^{volumique} \left(V_0 - \frac{A \times \rho}{\sigma_V} \right)$$

Fonction de coût recharge

 $c_n^{tps}(A, P_B) = coût du temps d'un recharge pour une autonomie A sur une borne <math>P_B$

Option 2: Batterie

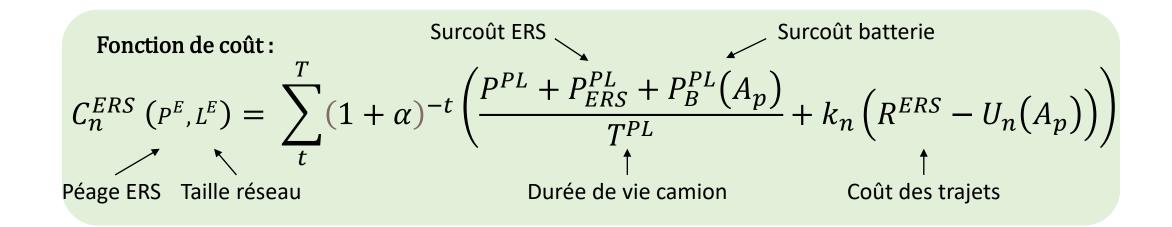
Fonction de coût : Surcoût batterie
$$C_n^B\left(P^E,L^E\right) = \sum_{t}^{T} (1+\alpha)^{-t} \left(\frac{P^{PL} + P_B^{PL}(A_g)}{T^{PL}} + k_n\left(R^B - U_n(A_g)\right)\right)$$

Péage ERS Taille réseau ERS

Durée de vie camion

Coût des trajets

Coût d'un trajet:


$$R^{B} = nb^{r}(A_{g})c_{n}^{tps}(A_{g}, P_{B,g}) + (l_{n} - l_{n}^{W})(c^{B} + t^{B}) + l_{n}^{W}(c^{B} + t^{B} + P^{W})$$

où
$$m{n}m{b}^r(A_g) = rac{l_n + 0.05*A_g}{A_g}$$

Option 3: ERS

Coût d'un trajet:

$$R^{ERS} = nb^{r}(A_{p})c_{n}^{tps}(A_{p}, P_{B,p}) + (l_{n} - l_{n}^{W})(c^{B} + t^{B}) + (l_{n}^{W} - d_{n})(c^{B} + t^{B} + P^{W}) + d_{n}(c^{E} + t^{E} + P^{E})$$

Où
$$nb^r(A_p) = rac{l_n - d_n + 0.05*A_p}{A_p}$$

Synthèse des 3 options

Diesel:

$$C_n^D(P^E, L^E) = \sum_{t}^{T} (1 + \alpha)^{-t} \left(\frac{P^{PL}}{T^{PL}} + k_n (R^D - U_n(A_D)) \right)$$

$$R^D = l_n(c^D + t^D) + P^W l_n^W$$

Batterie:

$$C_n^B(P^E, L^E) = \sum_{t}^{T} (1 + \alpha)^{-t} \left(\frac{P^{PL} + P_B^{PL}(A_g)}{T^{PL}} + k_n \left(R^B - U_n(A_g) \right) \right)$$

$$R^{B} = nb^{r}(A_{g})c_{n}^{tps}(A_{g}, P_{B,g}) + (l_{n} - l_{n}^{W})(c^{B} + t^{B}) + l_{n}^{W}(c^{B} + t^{B} + P^{W})$$

ERS:

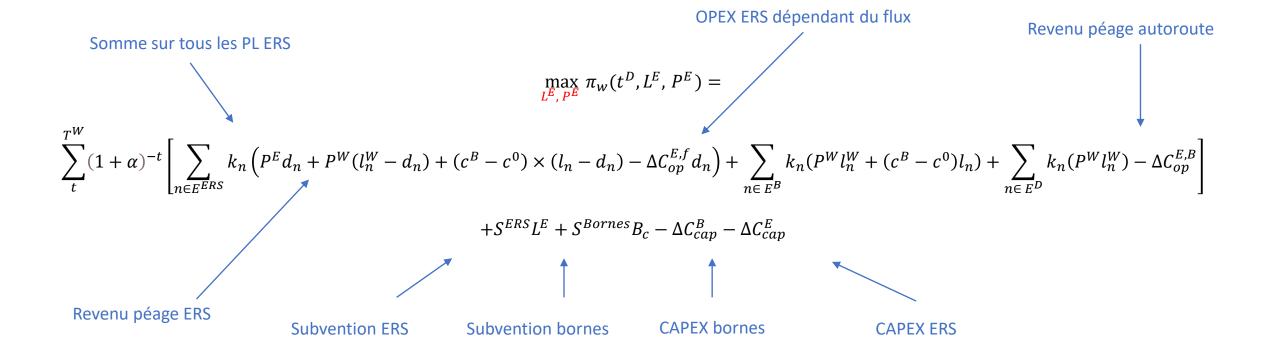
$$C_n^{ERS}(P^E, L^E) = \sum_{t}^{T} (1 + \alpha)^{-t} \left(\frac{P^{PL} + P_{ERS}^{PL} + P_{B}^{PL}(A_p)}{T^{PL}} + k_n \left(R^{ERS} - U_n(A_p) \right) \right)$$

$$R^{ERS} = nb^{r}(A_{p})c_{n}^{tps}(A_{p}, P_{B,p}) + (l_{n} - l_{n}^{W})(c^{B} + t^{B}) + (l_{n}^{W} - d_{n})(c^{B} + t^{B} + P^{W}) + d_{n}(c^{E} + t^{E} + P^{E})$$

Choix de la motorisation

Le transporteur choisit pour chaque camion, qui est attribué à un trajet connu d'avance, le scénario minimisant les coûts :

$$C_n(P^E, L^E) = min(C_n^D, C_n^B, C_n^{ERS})$$


On note:

$$n \in E^D(t^D, P^E, L^E)$$
 si $C_n(P^E, L^E) = C_n^D$
 $n \in E^B(t^D, P^E, L^E)$ si $C_n(P^E, L^E) = C_n^B$
 $n \in E^{ERS}(t^D, P^E, L^E)$ si $C_n(P^E, L^E) = C_n^{ERS}$

Il est évident que ces 3 espaces forment une partition de l'ensemble [1; N]

Profit du concessionnaire

$$\Delta C_{cap}^{B} = \Delta C_{cap}^{B,F} + \Delta C_{cap}^{B,V} B_{c}$$

$$\Delta C_{cap}^{E} = \Delta C_{cap}^{E,F} + \Delta C_{cap}^{E,V} L^{E}$$

$$\Delta C_{op}^{E,B} = \Delta C_{op}^{E,F} + \Delta C_{op}^{B,V} B_C + \Delta C_{op}^{E,V} L^E$$

Part fixe + variable selon la taille

Part fixe + variable selon la taille

Part fixe + variable selon la taille + variable selon le flux

Fonction de bien-être social

Profit de Vinci <

$$\max_{t^D} \pi_S(L^E, P^E, t^D) =$$

$$\pi_w - \sum_n C_n(P^E, L^E)$$

Coût d'opportunité

$$+ (1 + \lambda) \left(\sum_{t=0}^{T} (1 + \alpha)^{-t} \left[\sum_{n \in E^{D}} k_{n}(t^{D}l_{n}) + \sum_{n \in E^{B}} k_{n}(t^{B}l_{n}) + \sum_{n \in E^{ERS}} k_{n}(t^{B}(l_{n} - d_{n}) + t^{E}d_{n}) \right] - S^{ERS}L^{E} - S^{Bornes}B_{c} \right)$$

Externalité CO2

$$-\left(\sum_{t}^{T}(1+\alpha)^{-t}\left[\sum_{n\in E^{D}}k_{n}\left(p_{CO2}e_{CO2}^{D}l_{n}\right)+\sum_{n\in E^{B}}k_{n}\left(p_{CO2}e_{CO2}^{B}l_{n}\right)+\sum_{n\in E^{ERS}}k_{n}\left(p_{CO2}\left(e_{CO2}^{B}(l_{n}-d_{n})+e_{CO2}^{ERS}d_{n}\right)\right)\right]$$

Coût CO2

Emission CO2 kilométrique Batterie

Emission CO2 infrastructure ERS

Finance publique